
SfEncryptor Documentation 
Chapter 1: Introduction 

 1.1. Overview of SfEncryptor 
 1.2. Purpose and Goals 
 1.3. Key Features 

Chapter 2: Getting Started 

 2.1. Installation 
 2.2. Dependencies 
 2.3. Basic Usage Example 

Chapter 3: Core Functionality 

 3.1. Encryption Methods 
 3.2. Decryption Methods 
 3.3. Key Management 

Chapter 4: Advanced Usage 

 4.1. Customization Options 
 4.2. Error Handling 
 4.3. Best Practices 

Chapter 5: Contributing 

 5.1. Contribution Guidelines 
 5.2. Reporting Issues 
 5.3. Code Style 

 

 

 

 



Chapter 1: Introduction 

1.1 Overview of SfEncryptor 

SfEncryptor is a robust, modern desktop application designed to securely encrypt and decrypt 
files across multiple platforms including Windows, macOS, and Linux. Built with PyQt6, it 
offers a polished graphical user interface that makes cryptography accessible to both 
technical users and those less familiar with encryption concepts. At its core, SfEncryptor 
employs the Python Cryptography library, focusing on strong, industry-standard 
cryptographic primitives—defaulting to AES-256 in Galois/Counter Mode (GCM), which 
ensures both confidentiality and data integrity. 

Key highlights include: 

 User-friendly UI: Drag-and-drop functionality, intuitive key management, and a 
clear workflow reduce user error. 

 Security-first design: AES-256-GCM provides authenticated encryption, 
guaranteeing that ciphertext hasn’t been tampered with. 

 Extensibility: A plugin system allows developers to add or customize encryption 
algorithms without modifying core code. 

 Command-line interface: Enables scripting, automation, and headless operation. 
 Secure deletion: Optional multi-pass file overwriting minimizes forensic 

recoverability of original plaintext files. 
 Metadata sidecar files: These files store encryption parameters such as nonce and 

algorithm identifiers separately but alongside the encrypted files, facilitating seamless 
decryption without user guesswork. 

1.2 Purpose and Goals 

SfEncryptor’s mission is to democratize strong encryption by making it approachable and 
reliable across platforms, providing users with: 

 Accessibility: Simple workflows that hide complex cryptography behind a clean 
interface. 

 Cross-platform consistency: Ensuring the same encrypted files can be decrypted on 
any supported OS. 

 Key lifecycle safety: Offering users straightforward, safe ways to generate, import, 
export, label, and delete keys, minimizing risks of key leakage or loss. 

 Reduced user configuration errors: By embedding critical parameters like nonce 
and algorithm details into metadata files, the app prevents configuration mistakes that 
could otherwise cause data loss. 

 Future-proof architecture: The plugin system anticipates future cryptographic needs 
and new algorithms, enabling modular growth. 

 Secure destruction: For sensitive workflows, securely overwriting original plaintext 
files reduces residual data risk. 

1.3 Key Features 



Feature Description 

Modern UI Built on PyQt6 for a responsive, intuitive GUI 

Cross-platform Works seamlessly on Windows, macOS, and Linux 

AES-256-GCM Default encryption mode providing confidentiality and integrity 

Drag & Drop Easily add files/folders by dragging into the window 

Secure Deletion Multi-pass overwrite option for safe file removal 

Metadata Sidecar 
Files 

Automatic creation and management of metadata for encryption 
parameters 

Key Management 
Tab 

Generate, import, export (with optional password protection), and 
delete keys; assign human-readable labels 

Plugin System Add or customize encryption algorithms via plugin modules 

Command-line 
Interface 

Full CLI support for scripting and automation 

Theming Support for light/dark modes and modern styling 
 

Chapter 2: Getting Started 

2.1 Installation 

Prerequisites: 

 Python 3.7 or higher installed on your system. 

Step-by-step Installation: 

1. Clone the repository: 
2. git clone https://github.com/surya-sx/SfEncryptor.git 
3. cd SfEncryptor 
4. (Optional) Create and activate a Python virtual environment: 

This isolates dependencies, ensuring they don’t conflict with other Python projects. 
o On Windows: 
o python -m venv .venv 
o .venv\Scripts\activate 
o On macOS/Linux: 
o python -m venv .venv 
o source .venv/bin/activate 

5. Install required dependencies: 
6. pip install pyqt6 cryptography 

Or if the project contains a requirements.txt file: 

pip install -r requirements.txt 

7. Run the application: 
8. python SfEncryptor.py 

2.2 Dependencies 



 Python 3.7+ — Core runtime environment. 
 PyQt6 — Provides the graphical user interface components, enabling native-looking 

windows, dialogs, and widgets. 
 cryptography library — Implements AES-256-GCM and other cryptographic 

primitives. 
 Standard Python libraries — Used for file system operations, path handling, 

logging, and subprocess management. 

2.3 Basic Usage Example 

GUI Workflow 

 Launch the app with python SfEncryptor.py. 
 Drag and drop files or entire folders into the main window. 
 Select encryption algorithm and parameters in the settings (AES-256-GCM is default 

and recommended). 
 Navigate to the Key Management tab to generate a new key or import an existing key. 
 Click “Encrypt” to secure files, or “Decrypt” for files already encrypted. 
 Optionally, enable “secure deletion” to overwrite the original plaintext files after 

successful encryption. 
 The encrypted files will be saved alongside metadata sidecar files containing the 

encryption parameters. 

Example CLI Usage 

(Assuming CLI flags implemented as described) 

 Encrypt a file: 
 python SfEncryptor.py --encrypt --input /path/to/file.txt --key 

/path/to/keyfile --out /path/to/file.enc 
 Decrypt a file: 
 python SfEncryptor.py --decrypt --input /path/to/file.enc --key 

/path/to/keyfile --out /path/to/file.txt 
 Display help: 
 python SfEncryptor.py --help 

 

Chapter 3: Core Functionality 

3.1 Encryption Methods 

Default: AES-256-GCM 
AES (Advanced Encryption Standard) with a 256-bit key size is an industry gold standard for 
symmetric encryption. Using Galois/Counter Mode (GCM) ensures both: 

 Confidentiality: Data is encrypted so unauthorized users cannot read it. 
 Integrity: Authentication tags verify that the ciphertext and associated data have not 

been tampered with. 

Detailed Steps: 



1. Key acquisition: 
The application obtains a 256-bit symmetric key from the key management system, 
either by generating a new one or loading an existing key. 

2. Nonce/IV generation: 
Each encryption operation uses a unique nonce (Initialization Vector), essential to 
ensure GCM’s security guarantees. 

3. Encryption: 
The file is encrypted in chunks (supporting large files without loading all into 
memory). The process generates ciphertext plus an authentication tag. 

4. Metadata creation: 
Nonce, algorithm identifiers, tag locations, and other parameters are saved in a 
metadata sidecar file next to the encrypted file. 

5. Optional secure deletion: 
If enabled, the original plaintext file is overwritten multiple times with random data to 
prevent forensic recovery. 

Plugin Support: 
Developers can add new algorithms or workflows by placing plugin modules into the 
plugins/ directory. Plugins must implement a standard interface handling encryption, 
decryption, and metadata serialization. 

3.2 Decryption Methods 

 Metadata sidecar files are read to determine which algorithm, nonce, and parameters 
were used. 

 The correct key is loaded and verified for length and format. 
 The ciphertext is decrypted with authentication tag verification. 
 If the tag verification fails, indicating corruption or tampering, decryption is aborted 

with an error; no partial data is output. 

3.3 Key Management 

 Generate keys: Create secure, random 256-bit symmetric keys. 
 Import keys: Load keys from files or clipboard input. 
 Export keys: Save keys to files, optionally encrypting the key file with a password 

for added security. 
 Delete keys: Remove references and optionally securely erase key files. 
 Label keys: Assign human-readable labels to keys to organize multiple keys easily. 

Security Note: 
The application ensures keys are never written to logs or temporary files in plaintext and aims 
to minimize their time in memory. 

Chapter 4: Advanced Usage 

4.1 Customization Options 

 Plugins: 
Add custom encryption algorithms or processing workflows by implementing the 



expected interface (encrypt(), decrypt(), and metadata handlers). Drop these 
modules into plugins/. 

 Theming: 
Modify the UI appearance using Qt style sheets, enabling dark mode, high contrast, or 
user-preferred color schemes. 

 Metadata Extensions: 
Extend the metadata format to include additional fields such as the hash of the 
original filename, compression flags, or timestamps to improve data tracking. 

 Batch Automation: 
Use the CLI to encrypt or decrypt entire directories in batch scripts for automated 
workflows. 

 Secure Deletion Passes: 
Configure the number of overwrite passes (more passes increase security but take 
longer). 

4.2 Error Handling 

 Key errors: 
Detect invalid or missing keys early and inform the user. 

 Integrity failures: 
Immediately halt on authentication tag mismatches and notify the user to prevent 
corrupted data usage. 

 File I/O errors: 
Handle permission issues, disk space problems, or locked files gracefully with clear 
messages. 

 Plugin loading errors: 
Detect missing dependencies or interface mismatches and log detailed info for 
developers. 

 Metadata corruption: 
Validate sidecar files and refuse to decrypt if they’re missing or malformed. 

Best Practices: 
Fail fast and fail safely with clear, user-friendly error messages without exposing internal 
cryptographic details. 

4.3 Best Practices 

 Nonce uniqueness: 
Never reuse a nonce with the same key in AES-GCM — the app enforces this 
automatically. 

 Key backups: 
Store keys securely, preferably offline or in hardware modules. 

 Password protection: 
Password-encrypt exported key files to mitigate key theft risk. 

 Dependencies: 
Keep PyQt6, cryptography, and other libraries up to date to benefit from security 
patches. 

 Data validation: 
Verify decrypted data integrity beyond GCM if needed (e.g., using hashes). 



 Trusted plugins only: 
Since plugins have access to plaintext data, install only plugins from trusted sources. 

 Use secure deletion cautiously: 
Only enable when original plaintext files are confirmed no longer needed. 

 Least privilege execution: 
Run SfEncryptor with minimal permissions to reduce security risks. 

Chapter 5: Contributing 

5.1 Contribution Guidelines 

 Fork the repo and create feature branches with descriptive names (e.g., 
feature/add-chacha20). 

 Write clear, concise commit messages indicating the change purpose. 
 When submitting Pull Requests, include: 

o Summary of the change 
o Motivation for the feature/fix 
o How to test it 
o Screenshots if the UI is affected 

 Update documentation accordingly. 
 Add or suggest automated tests if possible. 

5.2 Reporting Issues 

Include: 

 Clear description and steps to reproduce the issue 
 Expected vs actual behavior 
 Environment info: OS, Python version 
 Relevant logs or screenshots (ensuring no sensitive info) 
 For security bugs, follow the responsible disclosure outlined in SECURITY.md. 

5.3 Code Style 

 Follow PEP 8 for readability. 
 Use snake_case for functions and variables; PascalCase for class names. 
 Centralize cryptographic constants and parameters. 
 Separate UI code from cryptographic logic. 
 Provide detailed docstrings on all public functions and classes explaining parameters, 

return values, and exceptions. 
 Maintain a minimal and clearly documented plugin interface to encourage community 

contributions. 

Appendix: Future Enhancements (Ideas) 

 Support for additional algorithms like ChaCha20-Poly1305, RSA+AES hybrid 
encryption. 

 Adding compression before encryption to reduce file sizes. 



 Metadata versioning for backward compatibility and enhanced integrity checks. 
 Automated key rotation and expiration management. 
 Headless service mode for scheduled, unattended encryption/decryption tasks. 

Licensing and Contact 

 License: MIT License (see LICENSE file) 
 Security Policy: See SECURITY.md for responsible disclosure 
 Author Contact: Surya B — myselsuryaaz@gmail.com | GitHub Profile 

 


